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1. Introduction

The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1)
is a centered Gaussian process defined by

(1.1) W
H,(1)
t =

t∫
0

K1(t, s)dWs ,

where W is a standard Brownian motion and the kernel K1(t, s), t ≥ s,
is given by

K1(t, s) = CH

[
tH−

1
2

sH−
1
2

(t− s)H−
1
2 − (H − 1

2
)

t∫
s

uH−
3
2

sH−
1
2

(u− s)H−
1
2du

]
,

where CH is a coefficient depending only on H.

Another form of fractional Brownian motion is Liouville fractional
Brownian motion (LfBm) [2, 6], where the kernel K1(t, s) is replaced

by K2(t, s) = (t− s)H− 1
2 , that is a stochastic process defined by

W
H,(2)
t :=

t∫
0

(t− s)αdWs , α = H − 1

2
.

1
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In [8] Mandelbrot has given a relation between W
H,(1)
t and W

H,(2)
t

(1.2) W
H,(1)
t =

1

Γ(1 + α)

[
Ut +W

H,(2)
t

]
,

where Ut =
0∫
−∞

(
(t− s)α− (−s)α

)
dWs is a process of absolutely contin-

uous trajectories.

It is well known that in the case where the Hurst index H = 1
2
,

the process WH (WH = W
H,(1)
t or W

H,(2)
t ) is a standard Brownian

motion and whereH 6= 1
2
,WH is neither a semimartingale nor a Markov

process. Hence, the stochastic calculus developed by Itô cannot be
applied. In this paper we use the pathwise stochastic integration, which
is introduced by Zähle [16], to consider the following fractional version
of the Black-Scholes (FB-S) model:

Bond price:

(1.3) dBt = rBtdt; B0 = 1

Stock price:

(1.4) dSt = µStdt+ σStdW
H
t ,

where S0 is a positive real number and WH
t is either a fBm or a LfBm.

The coefficients r, µ, σ are assumed to be constants symbolizing the
riskless interest rate, the drift of the stock and its volatility, respec-
tively.

The arbitrage in the (FB-S) model based on pathwise integration was
studied by Shiryayev [12] for the case of H > 1

2
. Cheridito [3] proved

a surprising result that, for Hurst parameters H ∈ (3
4
, 1) the mixed

process MH,ε
t = W

H,(1)
t + εW 1

t is equivalent to a martingale εW 1
t , as

long as the standard Brownian motion W 1
t is independent of W

H,(1)
t .

He observes that

Cov(MH,ε
t ,MH,ε

s ) = ε2 min(t, s) + Cov(W
H,(1)
t ,WH,(1)

s ).

Hence, MH,ε
t is an a.s. continuous centered Gaussian process that has

up to ε2 the same covariance structure as (W
H,(1)
t ). Cheridito [3] ver-

bally explains how this fact shows that if the stock price process in
(FB-S) model fits empirical data, then so does

(1.5) dSt = µStdt+ σStdW
H,(1)
t + εσStdW

1
t ; S0 > 0

for ε > 0 small enough.
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It is obvious that mixed model (1.5) is arbitrage-free and complete.
For a fixed value ε, one can price asset with respect to the unique
martingale measure Qε and get at time t = 0

C0(ε) = EQε
[(
S0 exp(µT + σ(W

H,(1)
T + εW 1

T ))− e−rTK
)+]

= BS(0, S0, σε),

where BS(0, S0, σε) denotes the Black-Scholes price of a call option on
a stock with initial price S0 and volatility σε. As ε → 0, the mixed
model (1.5) approaches the model (1.4), and the option price tends to

(1.6) C0 = lim
ε→0

BS(0, S0, σε) = (S0 − e−rTK)+,

that is, all randomness is eliminated. Cheridito [3] explains this pecu-
liarity by the possibility that traders can act arbitrarily fast and hence
immediately exploit the predictability of the model (1.5). Thereby,
they remove the random character by means of a suitable trading strat-
egy.

However, we can see that the mixed model (1.5) contains one ran-
dom source more than the original model (1.4). This means that the
dynamism of (1.5) is different from that of (1.4) even for arbitrarily
small ε.

In [13, 14], T. H. Thao has proved that a LfBm can be approximated
in L2(Ω) by semimartingales. We developed this result by showing that
WH
t can be approximated in Lp(Ω) by semimartingales

WH,ε
t =

t∫
0

K(t+ ε, s)dWs , ε > 0,

where K(t, s) equals to either K1(t, s) or K2(t, s). This fact leads us to
the following approximation model for stock price process

(1.7) dSεt = µSεt dt+ σSεt dW
H,ε
t ; S0 > 0.

This model driven by semimartingales has the same random source as
original (FB-S) model. We want also to emphasize that our approxi-
mation results is true for all H > 1

2
.

This paper is organized as follows: In Section 2, we state some basic
facts about a semimartingale approximation of fractional processes and
the generalized Stieltjes integral. In Section 3, our key result is stated
in Theorem 3.1 that the fractional stochastic integral can be approx-
imated by the stochastic integration with respect to semimartingales.



4 NGUYEN TIEN DUNG

In Section 4, the absence of arbitrage and semimartingale approxima-
tion of the Black-Scholes model are proved, the Black-Scholes equation
is found as well.

2. Preliminaries

Let us at first define the following stochastic process for every ε > 0

WH,ε
t =

t∫
0

K(t+ ε, s)dWs ,

where K(t, s) equals to either K1(t, s) or K2(t, s). We have the following
Proposition:

Proposition 2.1. I. For every ε > 0, WH,ε
t is Ft-semimartingale with

following decomposition

(2.1) WH,ε
t =

t∫
0

K(s+ ε, s)dWs +

t∫
0

ϕεsds,

where (Ft, 0 ≤ t ≤ T ) is the natural filtration associated to W.

ϕεs =

s∫
0

∂1K(s+ ε, u)dWu ,

∂1K(t, s) =
∂K(t, s)

∂t
.

II. The process WH,ε
t converges to WH

t in Lp(Ω), p > 0 when ε tends
to 0. This convergence is uniform with respect to t ∈ [0, T ] .

Proof. The proof of part I is as follows: applying stochastic Fubini’s
theorem we have

(2.2)
t∫

0

ϕεsds =

t∫
0

s∫
0

∂1K(s+ ε, u)dWuds =

t∫
0

t∫
u

∂1K(s+ ε, u)dsdWu

=

t∫
0

(
K(t+ ε, u)−K(u+ ε, u)

)
dWu = WH,ε

t −
t∫

0

K(s+ ε, s)dWs.

Hence, (2.1) follows from (2.2).
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We are now in position to prove part II of the proposition. For any
p > 0, applying Burkholder-Davis-Gundy inequality (see, [10]) we get

(2.3) E|WH,ε
t −WH

t |p ≤ E|
t∫

0

(
K(t+ ε, s)−K(t, s)

)
dWs|p

≤ cp

( t∫
0

(
K(t+ ε, s)−K(t, s)

)2
ds

) p
2

,

where cp is a finite positive constant and

(2.4)

t∫
0

(
K(t+ ε, s)−K(t, s)

)2
ds

=

t∫
0

K2(t+ ε, s)ds− 2

t∫
0

K(t+ ε, s)K(t, s)ds+

t∫
0

K2(t, s)ds

≤
t+ε∫
0

K2(t+ ε, s)ds− 2

t∧(t+ε)∫
0

K(t+ ε, s)K(t, s)ds

+

t∫
0

K2(t, s)ds = E|WH
t+ε −WH

t |2 ≤ ε2H .

Hence,

E|WH,ε
t −WH

t |p ≤ cpε
pH .

The proof of the proposition is complete. �

Corollary 2.1. Let Sεt , St be the solution to equation (1.4), (1.7), re-
spectively. Then Sεt converges to St in Lp(Ω), p > 0 when ε → 0, pro-
vided that H > 1

2
. This convergence is uniform with respect to t ∈ [0, T ] .

Proof. Let X1, X2 be two random variables. By Lagrange’s theorem
and Hölder’s inequality we have

(2.5) E|eX1 − eX2|p ≤ E|(X1 −X2) sup
min(X1,X2)≤x≤max(X1,X2)

ex|p

≤ E|(X1 −X2)e|X1|+|X2||p ≤
(
E[e2p|X1| + e2p|X2|]E|X1 −X2|2p

) 1
2

.
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We recall from [4] that

St = S0e
µt+σWH

t , Sεt = S0e
µt− 1

2
σ2K2(t+ε,t)+σWH,ε

t .

We now apply (2.5) to X1 = −1
2
σ2K2(t + ε, t) + σWH,ε

t , X2 = σWH
t

and obtain

(2.6) E|Sεt − St|p = Sp0e
pµtE|e−

1
2
σ2K2(t+ε,t)+σWH,ε

t − eσWH
t |p

≤ Sp0e
pµt

(
E[e2p|X1| + e2p|X2|]E|X1 −X2|2p

) 1
2

.

It is obvious that E[e2p|X1|+ e2p|X2|] is finite because WH,ε
t and WH

t are
centered Gaussian processes with finite variances in [0, T ]. Moreover, by
fundamental inequality (a+b)p ≤ cp(a

p+bp), where cp = 1 if 0 < p ≤ 1
and cp = 2p−1 if p > 1

(2.7) E|X1 −X2|2p ≤ c2p

[
E|WH,ε

t −WH
t |2p +

1

4p
σ4pK4p(t+ ε, t)

]
≤ c2p(ε

2pH +
1

4p
σ4pε4p(H− 1

2
)).

Thus, for 0 < ε < 1, there exists a finite constant C(p, S0, T ) depending
only on p, S0 and T such that

(2.8) E|Sεt − St|p ≤ C(p, S0, T )ε2p(H− 1
2

).

�

Next, we recall about a generalization of the Stieltjes integral in-
troduced by Zähle [16]. Fix a parameter 0 < λ < 1

2
, denote by

W 1−λ,∞[0, T ] the space of measurable function g : [0, T ] → R such
that

‖g‖1−λ,∞ := sup
0≤s<t≤T

( |g(t)− g(s)|
(t− s)1−λ +

t∫
s

|g(y)− g(s)|
(y − s)2−λ dy

)
< +∞ .

Clearly,

C1−λ+ε[0, T ] ⊂ W 1−λ,∞[0, T ] ⊂ C1−λ[0, T ] ∀ ε > 0,

where Cλ[0, T ] denotes the space of Hölder continuous functions of
order λ with the norm

‖g‖λ := sup
0≤t≤T

|g(t)|+ sup
0≤s<t≤T

|g(t)− g(s)|
|t− s|λ

.
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We also denote by W λ,1[0, T ] the space of measurable function f :
[0, T ]→ R such that

‖f‖λ,1 :=

T∫
0

|f(s)|
sλ

ds+

T∫
0

t∫
0

|f(t)− f(s)|
(t− s)λ+1

dsdt <∞ .

For the functions f ∈ W λ,1[0, T ], g ∈ W 1−λ,∞[0, T ], Zähle introduced
the generalized Stieltjes integral

T∫
0

f(t)dg(t) = (−1)λ
T∫

0

Dλ
0+f(t)D1−λ

T− g(t)dt

defined in terms of the fractional derivative operators

Dλ
0+f(x) =

1

Γ(1− λ)

(
f(x)

xλ
+ λ

x∫
0

f(x)− f(y)

(x− y)λ+1
dy

)
,

and

D1−λ
T− g(x) =

(−1)λ

Γ(1− λ)

(
g(x)− g(T )

(T − x)λ
+ λ

T∫
x

g(x)− g(y)

(x− y)λ+1
dy

)
.

Moreover, we have the following estimate for all t ∈ [0, T ]

(2.9) |
t∫

0

fdg| ≤ C(λ) ‖f‖λ,1 ‖g‖1−λ,∞ .

If f ∈ Cλ[0, T ] and g ∈ Cµ[0, T ] with λ+µ > 1, it is proved by Zähle

that the integral
t∫

0

fdg coincides with the Riemann-Stieltjes integral.

3. Approximation results

Theorem 3.1. Suppose that ut is a stochastic process belonging to
C1−H+δ[0, T ] a.s. with some constant δ > 0, i.e.

(3.1) sup
0≤t≤T

|ut|+ sup
0≤s<t≤T

|ut − us|
|t− s|1−H+δ

≤ K2(ω) a.s.
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where K(ω) is a finite random variable. Then

(3.2)

T∫
0

usdW
H,ε
s

P−→
T∫

0

usdW
H
s when ε→ 0,

provided that H > 1
2
. The notation

P−→ stands for the convergence in
probability.

Proof. For every ε > 0 we consider

uεt =
n∑
i=1

uti−1
1[ti−1,ti)(t) , uεT = uT ,

where n = [T
ε

+ 1] , ti = iT
n
, i = 0, ..., n and 1 is the indicator function,

i.e. 1[ti−1,ti)(t) =

{
1 if t ∈ [ti−1, ti)
0 otherwise.

For any t ∈ [0, T ], t should belong to some interval [ti−1, ti) for some
i, then the condition (3.1) leads us to the following estimate

(3.3) |uεt − ut| = |ut − uti−1
| ≤ K2(ω)|t− ti−1|1−H+δ

≤ K2(ω)|ti − ti−1|1−H+δ ≤ K2(ω)ε1−H+δ a.s.

It is easy to see that

(3.4)

∣∣∣∣
T∫

0

usdW
H,ε
s −

T∫
0

usdW
H
s

∣∣∣∣ ≤ ∣∣∣∣
T∫

0

(uεs − us)dWH
s

∣∣∣∣
+

∣∣∣∣
T∫

0

(uεs − us)dWH,ε
s

∣∣∣∣+

∣∣∣∣
T∫

0

uεsd(WH,ε
s −WH

s )

∣∣∣∣.
Firstly, we prove that the first term in the right-hand side of (3.4)
converges to 0 in probability. Fix a parameter 1−H < λ < min{1

2
, 1−

H + δ}, applying the inequality (2.9) we have

(3.5)

∣∣∣∣
T∫

0

(uεs − us)dWH
s

∣∣∣∣ ≤ C(λ) ‖uε − u‖λ,1 ‖WH‖1−λ,∞ a.s.,
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where C(λ) is a finite positive constant and

‖uε − u‖λ,1 =

T∫
0

|uεs − us|
sλ

ds+

T∫
0

t∫
0

|uεt − ut − uεs + us|
(t− s)λ+1

dsdt

≤ T 1−λ

1− λ
sup

0≤s≤T
|uεs − us|+

T∫
0

t∫
0

|uεt − ut − uεs + us|
(t− s)λ+1

dsdt

≤ T 1−λ

1− λ
K2(ω)ε1−H+δ +

T∫
0

t∫
0

|uεt − ut − uεs + us|
(t− s)λ+1

dsdt.

Noting that for every fixed t ∈ [0, T ] there exists ε > 0 such that
t ∈ [ti−1, ti) with some i. We have

(3.6)

t∫
0

|uεt − ut − uεs + us|
(t− s)λ+1

ds =
i−1∑
k=1

tk∫
tk−1

|uti−1
− ut − utk−1

+ us|
(t− s)λ+1

ds

+

t∫
ti−1

|uti−1
− ut − uti−1

+ us|
(t− s)λ+1

ds ≤
i−1∑
k=1

tk∫
tk−1

2K2(ω)ε1−H+δ

(t− s)λ+1
ds

+

t∫
ti−1

K2(ω)|t− s|1−H+δ

(t− s)λ+1
ds =

2K2(ω)ε1−H+δ

λ
[(t− ti−1)−λ − t−λ]

+
K2(ω)

1−H − λ+ δ
(t− ti−1)1−H−λ+δ

≤ 2K2(ω)ε1−H+δ

λ
(t− ti−1)−λ +

K2(ω)ε1−H−λ+δ

1−H − λ+ δ
.

Hence,

(3.7) ‖uε − u‖λ,1 ≤
K2(ω)

1−H − λ+ δ
(t− ti−1)1−H−λ+δ

+
2K2(ω)ε1−H+δ

λ

T∫
0

(t− ti−1)−λdt+
K2(ω)ε1−H−λ+δ

1−H − λ+ δ
→ 0

as ε→ 0 because the integral in the right-hand side of (3.7) is finite.

It is well known that WH has (H − η)-Hölder continuous paths for
all η ∈ (0, H) (see, [8]), i.e. there exists a finite random variable Kη(ω)
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such that

|WH
t −WH

s | ≤ Kη(ω)|t− s|H−η ∀ t, s ∈ [0, T ] a.s.

For 0 < η < λ− (1−H) we have

(3.8) ‖WH‖1−λ,∞ = sup
0≤s<t≤T

( |WH
t −WH

s |
(t− s)1−λ +

t∫
s

|WH
y −WH

s |
(y − s)2−λ dy

)

≤ Kη(ω) sup
0≤s<t≤T

(
(t− s)H+λ−η−1 +

t∫
s

(y − s)H+λ−η−2dy
)

≤ Kη(ω)TH+λ−η−1
(
1 +

1

H + λ− η − 1

)
.

As a consequence, by combining (3.5), (3.7) and (3.8) the first term
in the right-hand side of (3.4) will converge to zero in probability as
ε→ 0.

Next, we prove the second term in the right-hand side of (3.4) con-
verges to zero in L2(Ω) by using the decomposition (2.1).

(3.9) E

∣∣∣∣
T∫

0

(uεs − us)dWH,ε
s

∣∣∣∣2 ≤ E
∣∣ T∫

0

(uεs − us)K(s+ ε, s)dWs

∣∣2
+ E

∣∣∣∣
T∫

0

(uεs − us)ϕεsds
∣∣∣∣2 ≤

T∫
0

E(uεs − us)2K2(s+ ε, s)ds

+ ε2−2H+2δ

T∫
0

E
∣∣K2(ω)ϕεs

∣∣2ds.
It is obvious that the first term in the right-hand side of (3.9) converges
to zero in L2(Ω) because E(uεs − us)2 ≤ E[K4(ω)]ε2−2H+2δ and K(s +
ε, s)→ K(s, s) = 0 as ε→ 0.
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Applying the Hölder and the Burkholder-Davis-Gundy inequalities
we have

E
∣∣K2(ω)ϕεs

∣∣2 ≤ (E|K(ω)|8
)1/2(

E|
s∫

0

∂1K(s+ ε, u)dWu|4
)1/2

≤ C

s∫
0

|∂1K(s+ ε, u)|2du,

where C is a finite constant. We recall that

∂1K(t, s) =

{
CH

tH−
1
2

sH−
1
2

(t− s)H− 3
2 if WH

t = W
H,(1)
t ,

(H − 1
2
)(t− s)H− 3

2 if WH
t = W

H,(2)
t .

There exists C ′ not depending on ε such that

E
∣∣K2(ω)ϕεs

∣∣2 ≤ C ′
s∫

0

(s+ ε−u)2H−3du =
C ′

2− 2H
[ε2H−2− (s+ ε)2H−2],

and so the second term in the right-hand side of (3.9) converges to zero
in L2(Ω).

Finally, we prove that the third term in the right-hand side of (3.4)
converges to 0.

(3.10)

T∫
0

uεsd(WH,ε
s −WH

s )

=
n∑
i=1

uti−1
(WH,ε

ti −W
H
ti
−WH,ε

ti−1
+WH

ti−1
) + uT (WH,ε

T −WH
T )

=
n∑
i=1

(uti−1
− uti)(W

H,ε
ti −W

H
ti

) + uT (WH,ε
T −WH

T ).

It is obvious that uT (WH,ε
T −WH

T )
L2(Ω)−−−→ 0 because WH,ε

T

L2(Ω)−−−→ WH
T .

Moreover, we have

(3.11) |
n∑
i=1

(uti−1
− uti)(W

H,ε
ti −W

H
ti

)|

≤ K2(ω)
n∑
i=1

|ti−1 − ti|1−H+δ|WH,ε
ti −W

H
ti
|,
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and

(3.12) E

n∑
i=1

|ti−1 − ti|1−H+δ|WH,ε
ti −W

H
ti
|

≤
n∑
i=1

|ti−1 − ti|1−H+δ

(
E|WH,ε

ti −W
H
ti
|2
) 1

2

≤
n∑
i=1

(T
n

)1−H+δ
εH ≤

n∑
i=1

ε1−H+δεH

= [
T

ε
+ 1]ε1+δ → 0 when ε→ 0.

Thus, the proof of the theorem is complete. �

Remark 3.1. Another approximation approach is given by Androshchuk
[1] who proved that for a stochastic process u ∈ C2−2H+δ[0, T ] ⊂
C1−H+δ[0, T ] a.s the fractional stochastic integral can be approximated
by integrals with respect to absolutely continuous processes. More ap-
plications to finance is introduced by Mishura [9].

4. Applications to Fractional Black-Scholes model

Theorem 4.1. Suppose that H ∈ (0, 1). For fixed ε > 0, the approxi-
mation model (1.3) and (1.7) has no arbitrage.

Proof. Using (2.1) we can rewrite (1.7) as follows

(4.1) dSεt = (µ+ σϕεs)S
ε
t dt+ σK(t+ ε, t)Sεt dWt; S0 > 0.

From [11, Theorem 12.1.8 ] we have only to prove that the stochastic
process

u(t, ω) :=
µ+ σϕεt − r
σK(t+ ε, t)

satisfies the Novikov’s condition

E

[
exp

(1

2

T∫
0

u2(t, ω)dt
)]
<∞.

The latest inequality holds obviously because ϕεt =
t∫

0

∂1K(t+ ε, u)dWu

is a Gaussian process with finite variance.

The proof of Theorem thus is complete. �



SEMIMARTINGALE APPROXIMATION OF FBM 13

A strategy in this model is a pair of adapted stochastic processes
π = (αt, βt), where the processes αt and βt denote the number of bonds
at time t and number of stock shares held at time t, respectively. Thus,
the corresponding wealth process is given by

Vt = αtBt + βtSt,

where Bt and St are the bond price and stock price at time t, respec-
tively.

We make the following assumptions about the strategy π :

(A1). π is a self-financing strategy, i.e.

Vt = V0 +

t∫
0

αsdBs +

t∫
0

βsdSs.

where the second integral in the right-hand side is a pathwise integral.
(A2). π is a strategy of the following form (Markov-type strategy)

αt = α(t, St) , βt = β(t, St).

Next, we will prove that in the class of the Markov-type strategies
the wealth process can be considered as a limit of semimartingales.
Indeed, we have

V ε
t = α(t, Sεt )Bt + β(t, Sεt )S

ε
t

or equivalently,

V ε
t = V0 +

t∫
0

α(s, Sεs)dBs +

t∫
0

β(s, Sεs)dS
ε
s

= V0 +

t∫
0

[
α(s, Sεs)rBs + µβ(s, Sεs)S

ε
s

]
ds+

t∫
0

σβ(s, Sεs)S
ε
sdW

H,ε
s .

From the semimartingale decomposition (2.1) we obtain

(4.2) V ε
t = V0 +

t∫
0

[
rα(s, Sεs)Bs + µβ(s, Sεs)S

ε
s + σϕεsβ(s, Sεs)S

ε
s

]
ds

+

t∫
0

σK(s+ ε, s)β(s, Sεs)S
ε
sdWs

which means that V ε
t is a semimartingale.



14 NGUYEN TIEN DUNG

Theorem 4.2. Let H > 1
2

and assume that the self-financing, Markov-
type strategy π satisfies the following conditions with some constants
δ1, δ2, δ3 > 0

(C1). |α(t, x)− α(t, y)| ≤M |x− y|δ1 ∀ x, y ∈ R ∀ t ∈ [0, T ].

(C2). |β(t, x)− β(s, x)| ≤M |t− s| 12+δ2 ∀ x ∈ R ∀ t, s ∈ [0, T ].

(C3). β(t, x) is a differentiable function in x and

|β′x(t, x)| ≤M(1 + |x|δ3) ∀ x ∈ R.

Then V ε
t

P−→ Vt as ε→ 0 for any t ∈ [0, T ].

Proof. We have

Vt = V0 +

t∫
0

α(s, Ss)dBs +

t∫
0

β(s, Ss)dSs

= V0 +

t∫
0

[
α(s, Ss)rBs + µβ(s, Ss)Ss

]
ds+

t∫
0

σβ(s, Ss)SsdW
H
s ,

V ε
t = V0 +

t∫
0

α(s, Sεs)dBs +

t∫
0

β(s, Sεs)dS
ε
s

= V0 +

t∫
0

[
α(s, Sεs)rBs + µβ(s, Sεs)S

ε
s

]
ds+

t∫
0

σβ(s, Sεs)S
ε
sdW

H,ε
s .

Hence,

(4.3) |V ε
t − Vt| ≤

t∫
0

∣∣α(s, Sεs)− α(s, Ss)
∣∣r ersds

+ µ

t∫
0

∣∣β(s, Sεs)S
ε
s − β(s, Ss)Ss

∣∣ds
+

∣∣∣∣
t∫

0

σβ(s, Sεs)S
ε
sdW

H,ε
s −

t∫
0

σβ(s, Ss)SsdW
H
s

∣∣∣∣ := I1 + I2 + I3.
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First, by using Hölder’s inequality and the condition (C1) we get

(4.4) E[I2
1 ] ≤

t∫
0

r2 e2rsds

t∫
0

E|α(s, Sεs)− α(s, Ss)|2ds

≤ rM2(e2rT − 1)

2

t∫
0

E|Sεs − Ss|2δ1ds.

Consequently, Corollary 2.1 implies that I1
L2(Ω)−−−→ 0 when ε→ 0.

Next, we prove that I2 also converges to 0 in L2(Ω). Indeed, put
f(t, x) = β(t, x)x, uεt = f(t, Sεt ) and ut = f(t, St) then by Hölder’s
inequality we have

(4.5) E|uεt − ut|2 ≤ E
[
A(t, x)(Sεt − St)

]2
≤
[
E|A(t, x)|4

] 1
2
[
E|Sεt − St|4

] 1
2 ,

where

A(t, x) := sup
min(Sεt ,St)≤x≤max(Sεt ,St)

∣∣∂f(t, x)

∂x

∣∣.
From Corollary 2.1 we have

(4.6)
[
E|Sεt − St|4

] 1
2 ≤ C(S0, T )ε4H−2 → 0

uniformly in t ∈ [0, T ] as ε→ 0. Therefore, we need only to prove the
first term in the right-hand side of (4.5) is finite.

Using the conditions (C2) and (C3) we have∣∣∂f(t, x)

∂x

∣∣ ≤ |β(t, x)|+ |β′x(t, x)x|

≤ |β(0, x)|+Mt
1
2

+δ2 +M(|x|+ |x|1+δ3).

Hence,

A(t, x) ≤ sup
min(Sεt ,St)≤x≤max(Sεt ,St)

(|β(0, x)|+Mt
1
2

+δ2 +M(|x|+ |x|1+δ3))

≤ |β(0, S0)|+MT
1
2

+δ2 +M sup
min(Sεt ,St)≤x≤max(Sεt ,St)

(|x|+ |x|1+δ3)

≤ |β(0, S0)|+MT
1
2

+δ2 +M sup
|x|≤Sεt+St

(|x|+ |x|1+δ3)

≤ |β(0, S0)|+MT
1
2

+δ2 +M(|Sεt + St|+ |Sεt + St|1+δ3)
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and the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) leads us to

E|A(t, x)|4 ≤ 27
[
(β(0, S0) +MT

1
2

+δ2)4 +M4E|Sεt + St|4

+M4E|Sεt + St|4(1+δ3)
]
.

Now it is enough to prove E|Sεt + St|p <∞ for any p > 1. We have

(4.7) E|Sεt + St|p ≤ 2p−1(E|Sεt |p + E|St|p)

≤ 2p−1Sp0
(
Eep(µt−

1
2
σ2K(t+ε,t)+σWH,ε

t ) + Eep(µt+σW
H
t )
)
.

Obviously, the right-hand side of (4.7) is bounded by a constant CT
because WH,ε

t ,WH
t , t ∈ [0, T ] are centered Gaussian processes with fi-

nite variances. Thus, uεt
L2(Ω)−−−→ ut uniformly in t ∈ [0, T ] when ε → 0

and

E|I2|2 = µ2E

( t∫
0

(uεs−us)ds
)2

≤ µ2T 2 sup
0≤s≤T

E|uεs−us|2 → 0 , ε→ 0.

Finally, we show that I3
P−→ 0 when ε→ 0.

(4.8) I3 =

∣∣∣∣
t∫

0

σuεsdW
H,ε
s −

t∫
0

σusdW
H
s

∣∣∣∣
≤
∣∣∣∣

t∫
0

σ(uεs − us)dWH,ε
s

∣∣∣∣+

∣∣∣∣
t∫

0

σusdW
H,ε
s −

t∫
0

σusdW
H
s

∣∣∣∣
Since St ∈ C

1
2

−
[0, T ] =

⋂
δ< 1

2

Cδ[0, T ] and under the conditions (C2), (C3),

the simple estimate

|ut − us| ≤ |β(t, St)St − β(s, St)St| + |β(s, St)St − β(s, Ss)Ss|

implies that ut ∈ C
1
2

−
[0, T ]. Hence, the convergence of the second term

in the right-hand side of (4.8) to zero in probability follows from The-
orem 3.1. The first term converges to zero in probability because of
Lemma 4.1 below. Indeed, we have from the chain rule for Malliavin
derivative

Dsut = Ds[β(t, St)St] = [β′x(t, St)St + β(t, St)]Ds[S0e
µt+σWH

t ]

= σSt[β
′
x(t, St)St + β(t, St)]K(t, s)

which implies that the condition (4.9) below holds.
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The proof of Theorem thus is complete.

�

Denote by D1,2 ⊂ L2(Ω) the space of Malliavin differentiable vari-
ables with norm

‖F‖1,2 :=
[
E|F |2

] 1
2 + E

[ T∫
0

|DuF |2du
] 1

2

.

Lemma 4.1. Suppose that H > 1
2
. Let u, uε ∈ D1,2 be adapted stochas-

tic processes satisfying the condition

(4.9)

T∫
0

t∫
0

|Dsut|∂1K(t, s)dsdt <∞ a.s.

If uεt → ut ucp (uniform convergence in probability), that is ∀ t : |uεt −
ut| ≤ Cεγ a.s with some γ > 0 then

(4.10) lim
ε→0

T∫
0

(uεs − us)dWH,ε
s = 0

in probability.

Proof. From the decomposition (2.1) we have

T∫
0

(uεs − us) dWH,ε
s =

T∫
0

(uεs − us)K(s+ ε, s)dWs

+

T∫
0

(uεs − us)
s∫

0

∂1K(s+ ε, t) dWtds.

Since lim
ε→0

s∫
0

∂1K(s+ε, t) dWt does not exist, we can not take the limit as

ε → 0 directly. However, the anticipating stochastic Fubini’s theorem
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(see Theorem 3.1 [7]) yields

T∫
0

(uεs − us) dWH,ε
s =

T∫
0

(uεs − us)K(T + ε, s) dWs

+

T∫
0

T∫
s

(uεt − ut − uεs + us) ∂1K(s+ ε, t)dtδWs

+

T∫
0

dt

t∫
0

Ds(u
ε
t − ut) ∂1K(t+ ε, s)ds := A1 + A2 + A3,

where DsF is the Malliavin derivative of variable F and δWs is the
Skorokhod differential.

It is easy to see that A1, A2 → 0 because uεt → ut ucp and the
condition (4.9) is enough to ensure the convergence of A3 to zero.

The proof of Lemma thus is complete. �

Theorem 4.3. Suppose that H > 1
2
. Let C(t, Sεt ) denote the value of

a European call option at time t in the approximation (FB-S) model
(1.3), (1.7). Then the Black-Scholes equation is given by

(4.11)
1

2
σ2K2(t+ ε, t)(Sε)2 ∂2C

∂(Sε)2
+ r

∂C

∂Sε
Sε +

∂C

∂t
− rC = 0

and as a consequence, the Black-Scholes equation in (FB-S) model is

(4.12) r
∂C

∂S
S +

∂C

∂t
− rC = 0

which gives us the explicit formula for price of a European call option
at time t = 0

(4.13) C0 = (S0 − e−rTK)+.

Proof. Using Itô’s differential formula, we get

(4.14) dC = [
∂C

∂t
+ (µ+ σϕεt)S

ε ∂C

∂Sε
+

1

2
σ2K2(t+ ε, t)(Sε)2 ∂2C

∂(Sε)2
]dt

+ σK(t+ ε, t)
∂C

∂Sε
SεdWt.

We form a portfolio consisting of

• one unit of the option C,
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• a short position on ∂C
∂Sε

units of the stock Sε and
• a debt of A(t, Sε) at the risk-free interest rate r.

The value process R(t, Sεt ) of this portfolio satisfies

dR = dC − ∂C

∂Sε
dSε − Ar dt

= [
∂C

∂t
+

1

2
σ2K2(t+ ε, t)(Sε)2 ∂2C

∂(Sε)2
− Ar]dt.

Now we choose

A =
1

r

[∂C
∂t

+
1

2
σ2K2(t+ ε, t)(Sε)2 ∂2C

∂(Sε)2

]
then dR = 0. Obviously, the portfolio does not yield any return, hence
its value itself must also be zero. This leads to the Black-Scholes partial
differential equation

(4.15)
1

2
σ2K2(t+ ε, t)(Sε)2 ∂2C

∂(Sε)2
+ r

∂C

∂Sε
Sε +

∂C

∂t
− rC = 0

which has to be solved with respect to the boundary conditions{
C(t, 0) = 0 ∀ t ∈ [0, T ],
C(T, SεT ) = (SεT −K)+.

The equation (4.12) follows from (4.15) by taking the limit as ε→ 0.

The proof of Theorem thus is complete. �

Remark 4.1. The equation (4.15) holds for all H ∈ (0, 1) and in the

case, WH
t = W

H,(2)
t is LfBm, it becomes

(4.16)
1

2
σ2ε2α(Sε)2 ∂2C

∂(Sε)2
+ r

∂C

∂Sε
Sε +

∂C

∂t
− rC = 0

and we get the price of a European call option

C0(ε) = S0N(d1)− e−rTKN(d2)

where d1 =
ln
S0
K

+(r+σ2ε2α

2
)T

σεα
√
T

, d2 =
ln
S0
K

+(r−σ
2ε2α

2
)T

σεα
√
T

and N(x) is the stan-

dard normal cumulative distribution function.

Obviously, for H = 1
2
, we get the well-known Black-Scholes pricing

formula.
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