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ABSTRACT. The aim of this paper is to provide a semimartingale
approximation of a fractional stochastic integration. This result
leads us to approximate the fractional Black-Scholes model by a
model driven by semimartingales, and a European option pricing
formula is found.
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1. INTRODUCTION

The fractional Brownian motion (fBm) with Hurst index H € (0, 1)
is a centered Gaussian process defined by

t
(1.1) W = /K1 (t, s)dW, ,
0

where W is a standard Brownian motion and the kernel K7 (¢,s),t > s,
is given by

t
Kift,s) = Cor| St =9t = (a1 = ) [ M a - 9,

where Cy is a coefficient depending only on H.

Another form of fractional Brownian motion is Liouville fractional
Brownian motion (LfBm) [2, 6], where the kernel K(¢,s) is replaced
by Ky(t,s) = (t — s)¥2, that is a stochastic process defined by

¢

1
WtH’(Q) = /(t —$)%dW,, a=H — 5
0
1
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In [8] Mandelbrot has given a relation between W,”" and W;"®

(1.2) W/ = U, +w/®,

r'(1 —l—a)[

0
where Uy = [ ((t—s)™— (—s)*)dW, is a process of absolutely contin-

uous trajectories.

It is well known that in the case where the Hurst index H = %,

the process WH (WH = WM or W@ is a standard Brownian
motion and where H # %, W is neither a semimartingale nor a Markov
process. Hence, the stochastic calculus developed by It6 cannot be
applied. In this paper we use the pathwise stochastic integration, which
is introduced by Zéhle [16], to consider the following fractional version

of the Black-Scholes (FB-S) model:

Bond price:
(13) dBt == ’I"Btdt, BO =1

Stock price:
(1.4) S, = pSydt + oS, dW,,

where Sy is a positive real number and W/ is either a fBm or a LfBm.
The coefficients r, 1,0 are assumed to be constants symbolizing the
riskless interest rate, the drift of the stock and its volatility, respec-
tively.

The arbitrage in the (FB-S) model based on pathwise integration was
studied by Shiryayev [12] for the case of H > 1. Cheridito [3] proved
a surprising result that, for Hurst parameters H € (%, 1) the mixed
process MtH’E = WtH’(l) + eW} is equivalent to a martingale eW}!, as
long as the standard Brownian motion W} is independent of WtH’(l).
He observes that

Cov(M*, M7#) = 2 min(t, s) + COU(WtH’(l), WHWL),

Hence, M, ® is an a.s. continuous centered Gaussian process that has

up to €* the same covariance structure as (WtH’(l)). Cheridito [3] ver-
bally explains how this fact shows that if the stock price process in
(FB-S) model fits empirical data, then so does

(1.5) dS, = pS,dt + oS, dW; " + e0S, dW}; Sy >0

for € > 0 small enough.
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It is obvious that mixed model (1.5) is arbitrage-free and complete.
For a fixed value e, one can price asset with respect to the unique
martingale measure ). and get at time ¢t = 0

Cole) = Eq.[(Soexp(uT + oW + cWi)) — e TK) "]

= BS(O,S(),O'S),

where BS(0, Sy, o¢) denotes the Black-Scholes price of a call option on
a stock with initial price Sy and volatility ce. As ¢ — 0, the mixed
model (1.5) approaches the model (1.4), and the option price tends to

(1.6) Co = lim BS(0, So, 02) = (S — e TK)T,

that is, all randomness is eliminated. Cheridito [3] explains this pecu-
liarity by the possibility that traders can act arbitrarily fast and hence
immediately exploit the predictability of the model (1.5). Thereby,
they remove the random character by means of a suitable trading strat-

egy.

However, we can see that the mixed model (1.5) contains one ran-
dom source more than the original model (1.4). This means that the
dynamism of (1.5) is different from that of (1.4) even for arbitrarily
small .

In [13, 14], T. H. Thao has proved that a LfBm can be approximated
in L?(2) by semimartingales. We developed this result by showing that
WH can be approximated in LP()) by semimartingales

t
WtH’E:/K(t+5,s)dWs , €>0,
0

where K (¢, s) equals to either K;(t,s) or Ks(t,s). This fact leads us to
the following approximation model for stock price process

(1.7) dS; = pSedt + o SEdWw<: Sy > 0.

This model driven by semimartingales has the same random source as
original (FB-S) model. We want also to emphasize that our approxi-
mation results is true for all H > %

This paper is organized as follows: In Section 2, we state some basic
facts about a semimartingale approximation of fractional processes and
the generalized Stieltjes integral. In Section 3, our key result is stated
in Theorem 3.1 that the fractional stochastic integral can be approx-
imated by the stochastic integration with respect to semimartingales.
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In Section 4, the absence of arbitrage and semimartingale approxima-
tion of the Black-Scholes model are proved, the Black-Scholes equation
is found as well.

2. PRELIMINARIES

Let us at first define the following stochastic process for every € > 0
t
wie = / K(t+e,s)dW,,
0

where K (t, s) equals to either K (¢, s) or Ks(t, s). We have the following
Proposition:

Proposition 2.1. 1. For every ¢ > 0, V[QH78 15 Fy-semimartingale with
following decomposition

t t
(2.1) Wi = /K(s +e,5)dW, + /gpids,
0 0
where (F;,0 <t <T) is the natural filtration associated to W.
@S = /alK(s +e,u)dW,,
0

0K (t,s)
OhK(t,s) = ————.
1 ( 7S> ot
II. The process W/ converges to WH in LP(Q2),p > 0 when ¢ tends

to 0. This convergence is uniform with respect to t € [0,T].

Proof. The proof of part I is as follows: applying stochastic Fubini’s
theorem we have

(2.2)

t t s t ot
/gpids = //alK(s +e,u)dW,ds = //alK(s + e, u)dsdW,
0 00 0 u

¢ ¢

= / (K(t+e,u) — K(u+e,u)dW, = wihe — /K(s + €, 5)dWs.
0 0

Hence, (2.1) follows from (2.2).
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We are now in position to prove part IT of the proposition. For any
p > 0, applying Burkholder-Davis-Gundy inequality (see, [10]) we get

t
(2.3) E|Wh —wHpP < B| / (K(t+e,5) — K(t,s))dW,|"
0

t

Scp(/(K<t+e,s) —K<t,s))2d8)gv

where ¢, is a finite positive constant and

(24) | (K(t+e,5)— K(t,s)) ds

o

t

t t
:/Kz(t—l—a,s)ds—Z/K(t—i—a, s)K(t,s)ds+/K2(t, 5)ds
0 0 0
t+e t/\(t+6)

g/K2(t+a,s)ds—2 / K(t+ e, 8)K(t, s)ds
0 0

t
+ /KQ(t, s)ds = E|W/[H, — W/l <.
0

Hence,

EWhe —wWHP < ¢, el
The proof of the proposition is complete. 0
Corollary 2.1. Let S¢,S; be the solution to equation (1.4), (1.7), re-

spectively. Then S; converges to Sy in LP(2),p > 0 when ¢ — 0, pro-
vided that H > % This convergence is uniform with respect tot € [0, T .

Proof. Let X1, X5 be two random variables. By Lagrange’s theorem
and Holder’s inequality we have

(2.5) Ele® — P < B|(X; — Xy) sup e’P
min(X1,X2)<z<max(X1,X2)

|=

2

< E|(X; - X2>eIX1\+IX2|’p < (E[€2P|X1| + €2plel]E’X1 _ X2|2p)
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We recall from [4] that

Sy = SpetttoWd5E = Gpent= 3ot KA (ted) +o W,

We now apply (2.5) to X1 = —302K%(t + ¢,t) + oW, Xy = cWH
and obtain

(2:6) EIS; — S| = Spemt Blem a7 K et et _ ool o
1
< Shent (E[&P'Xﬂ + e XN E|IX — X2|2p) B

It is obvious that E[e2!1X1] 4 ¢2P1X21] is finite because W, and W/ are
centered Gaussian processes with finite variances in [0, 7. Moreover, by
fundamental inequality (a+0b)? < ¢,(a?+0P), where ¢, = 1if0 < p <1
and ¢, =21 ifp > 1

1
(2.7) B|Xi — Xof® < o, [BIW" — WH|? + Ea‘*PK‘*p(t +e,t)]

< ey (P + 4%04”54”(}1_;)).

Thus, for 0 < e < 1, there exists a finite constant C(p, Sy, T') depending
only on p, Sy and T such that

(2.8) E|Sf — S|P < C(p, So, T)e>~3),
]

Next, we recall about a generalization of the Stieltjes integral in-
troduced by Zahle [16]. Fix a parameter 0 < A < 3, denote by
W1i=A°[0, T| the space of measurable function g : [0,7] — R such
that

Clearly,
C'AME[0,T] € W10, 7] € C120,T) V e > 0,

where C*[0,T] denotes the space of Holder continuous functions of
order A with the norm

£ —
o s 0]+ p =90
O=t=T o<s<t<T |t —$]
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We also denote by W*L[0,T] the space of measurable function f :

[0,7] — R such that
[ [ = )]
— f(s
0 0

For the functions f € WM[0,7T],g € W'=»[0,T], Zahle introduced
the generalized Stieltjes integral

/T F(t)da () / D (1) Dy g(t)dt

defined in terms of the fractional derivative operators

1
D6\+f(x): T(1—\) ( ) +)‘/f A+1 )’

1 —1)* x) —g(T r x) —
o= (A [

T
Il = [
0

and

T

Moreover, we have the following estimate for all ¢ € [0, 7]

(2.9) | / fdg| < CO) [ f I Nglliorme -
0

If f € C*0,T) and g € C*[0,T] with A+ p > 1, it is proved by Zihle
t

that the integral [ fdg coincides with the Riemann-Stieltjes integral.
0

3. APPROXIMATION RESULTS

Theorem 3.1. Suppose that u; is a stochastic process belonging to
CYH+3[0,T) a.s. with some constant § > 0, i.e.

Up — Us
(3.1) sup |u] + sup ]t|—ts|—1H|+5 < K*(w) a.s.

0<t<T 0<s<t<T



8 NGUYEN TIEN DUNG

where K(w) is a finite random variable. Then

T T
(3.2) /udeSH’E L, /uSdWSH when ¢ — 0,
0

0

provided that H > L. The notation L, stands for the convergence in
probability.

N

Proof. For every € > 0 we consider
n
up =y uy 1 (t) , up=u
t ti—1+[ti—1,t:) y Yr T
i=1

where n = [% +1],t; =2 i=0,...,n and 1 is the indicator function,

_ 1 ifte [ti1,t;)
e Ly )(t) :{ 0 otherwise.

For any t € [0,71],t should belong to some interval [¢;_;,;) for some
i, then the condition (3.1) leads us to the following estimate

(3:3) [uf —wil = |uy — wy, | < KXw)[t =ty 7HF°
< K2 w)|ty — tiy 7P < K2 (w)e 710 g

It is easy to see that

T T
(3.4) ‘ / usdWHe — / u dW !
0 0

T
< \ J
0

T T
+ ‘ /(ui - us)aﬂ/VSH’8 + ’ /uid(WSHE - WSH)
0 0

Firstly, we prove that the first term in the right-hand side of (3.4)
converges to 0 in probability. Fix a parameter 1 — H < \ < min{%, 1—
H + ¢}, applying the inequality (2.9) we have

< CO Jlu® = ulaa W7 [-aeo a5,

(35) \ / (uf — )W
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where C'()) is a finite positive constant and

|us — |u — uy — U + U
||u® —u||A1—/ d + : (=P dsdt

T1=A <
< sup |u§—u5|+//‘ut U U ’dsdt

1— X geser )M

T t

T 1-H+§ |uf — up — ug + us|

< . )\K (w)e —|—// syt dsdt.
0

Noting that for every fixed ¢t € [0,7] there exists ¢ > 0 such that
t € [ti—1,t;) with some i. We have

- tr
|u§ — up — uS + e, — U — U, + U]
(3.6) / (f — s+ ds = z_: (f — 5)M1 ds
0

k_ltk—1
t . ti
g, | — ug — ug, | + ug i / 2K (w)et-H+o
1 1 d < d
+ / (t — s+ §> ; (t — 5)*1 §
i Ttk
Kz |t 3\1 H+5 2K2(w)€1—H+5 N o
/ (it )
K2<W) 1-H-\
t—ti, —H—-X+6
gy 1)
- 2K2<w)€1—H+6 (t_t' )_)\+ K2<w)€1—H—>\+§
= A it 1—H-—\+0
Hence
K*(w)
37 _ t—tl_ 1-H—-X\+0
(37) |l uuu_1 et
2K2 1 H+46 KQ( ) 1-H—-X+6
t—ti_1) dt 0
/ D T W
0

as € — 0 because the integral in the right-hand side of (3.7) is finite.

It is well known that W# has (H — n)-Hdlder continuous paths for
all n € (0, H) (see, [8]), i.e. there exists a finite random variable K, (w)
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such that
W —WH < K, ()|t —s|""Vtse€[0,T] as.
For 0 <n < A—(1— H) we have

t
wH —wH wh—whH
(38) [WHlnee = sup (=Wl [IWy = W]

d
o<s<i<T © (t—s8)17* (y — s)2> y)

t

<K sup (=5 g [y 9T ay)
0<s<t<T

1
sk H—l—)\—n—l)'

ST (1

As a consequence, by combining (3.5), (3.7) and (3.8) the first term
in the right-hand side of (3.4) will converge to zero in probability as
e —0.

Next, we prove the second term in the right-hand side of (3.4) con-
verges to zero in L*(§2) by using the decomposition (2.1).

2

< B| [ (uf = u)K (s + &, 8)dW, |’

\'ﬂ

T
(3.9) E‘ / (U — ) AW
0

T

+ E' /(ui — ug)pids
0

2

< | B(ui —u)’K*(s + ¢, 5)ds

O\’ﬂ <)

T
+€2_2H+25/E’K2(w)g@§’2d&
0

It is obvious that the first term in the right-hand side of (3.9) converges
to zero in L?(Q)) because E(u — u,)? < E[K*(w)]e?" 20+ and K (s +
g,8) — K(s,s) =0ase— 0.
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Applying the Holder and the Burkholder-Davis-Gundy inequalities
we have

B @) < (BIK@)) " (B] [ k(s + 2w

<C [k (s + e,

where C' is a finite constant. We recall that
1
BK (L, 5) Lyt —s)E i Wi = W,
1 ; - s
(H—L(t—s)H3 if WH = WtH @

2

There exists C’ not depending on ¢ such that

E‘KQ(w)goi‘Q < C”/(s+€—u)2H3du =
0

!
Iy [€2H72 o (S+8)2H72],

and so the second term in the right-hand side of (3.9) converges to zero
in L*(Q).

Finally, we prove that the third term in the right-hand side of (3.4)
converges to 0.

(3.10) usd(WHs — WH)

3 Ot~

- uti*(Wt{‘{’g - Wtfl - Wt?j + thil) + UT(W#E — Wi

i=1

_Zum— YW — WY+ up (Wi — W,

L2(9)

2
L@ LSRN 17773

It is obvious that up(Wi® — W) === 0 because W,
Moreover, we have

(3.11) ’Zutll_ WHE Wtf[)‘

< KQ(w) Z ‘ti—l _ tiyl—H—i-éthl;I,a —

i=1
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and

(8.12) EY|tin — W — Wl
=1

[

n =
2
<Y [t =t (Elwf’a - WfIQ)

i=1

< Z (Z)l_H+5€H < Zgl—H—i-dsH
n
i=1 i=1
T 146
=[—+4+1]e™ — 0 when ¢ — 0.
€
Thus, the proof of the theorem is complete. O

Remark 3.1. Another approximation approach is given by Androshchuk
[1] who proved that for a stochastic process u € C2?72H+0[0,T] C
C'H+3]0, T a.s the fractional stochastic integral can be approximated
by integrals with respect to absolutely continuous processes. More ap-
plications to finance is introduced by Mishura [9].

4. APPLICATIONS TO FRACTIONAL BLACK-SCHOLES MODEL

Theorem 4.1. Suppose that H € (0,1). For fized € > 0, the approxi-
mation model (1.3) and (1.7) has no arbitrage.

Proof. Using (2.1) we can rewrite (1.7) as follows
(4.1) dS; = (u+ o) S;dt + o K(t 4+ ¢,t)S;dWy; Sy > 0.

From [11, Theorem 12.1.8 | we have only to prove that the stochastic

process
_ptopi—r

u(t,w) : oK{t+ed)

satisfies the Novikov’s condition
T

E{exp (%/u%,w)dt)} < 0.

0
¢

The latest inequality holds obviously because ¢f = [ 91K (t+¢,u)dW,
0

is a Gaussian process with finite variance.

The proof of Theorem thus is complete. O
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A strategy in this model is a pair of adapted stochastic processes
™ = (au, B¢), where the processes oy and 3; denote the number of bonds
at time ¢ and number of stock shares held at time ¢, respectively. Thus,
the corresponding wealth process is given by

Vi = au By + B,.S%,

where B; and S; are the bond price and stock price at time ¢, respec-
tively.

We make the following assumptions about the strategy 7 :

(A7). 7 is a self-financing strategy, i.e.
t

t
‘/t:‘/()_’_/asst—i_/ﬁsts
0 0

where the second integral in the right-hand side is a pathwise integral.
(As). 7 is a strategy of the following form (Markov-type strategy)

ap=at,S) , B =Pt 5).

Next, we will prove that in the class of the Markov-type strategies
the wealth process can be considered as a limit of semimartingales.
Indeed, we have

Vi =al(t,S7)B + B(¢,57)5;
or equivalently,

t

t
Vi =Vo+ [ als.S0aB.+ [ Bs.5)as:
0 0

. t

Vit [ [a(s, S, + (s, S0)SEJds + [ as(s, sszawits
0 0
From the semimartingale decomposition (2.1) we obtain

t
(42) Vi=W +/ [ras, S5)Bs + pf(s, 55) S5 + oplf(s, 55) 5] ds

0
t

+ /O'K(S +¢,5)B(s, S5)ScdW
0
which means that V7 is a semimartingale.
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Theorem 4.2. Let H > % and assume that the self-financing, Markov-
type strateqy m satisfies the following conditions with some constants
(51, (52, 53 >0

(C). |a(t,z) —at,y)| < M|z —y|* Vao,y e RVt €[0,T)].
(Cy). |B(t,2) — B(s,z)| < M|t —s|2t®> Vz e RV t,s € [0,T].
(Cs3). B(t,x) is a differentiable function in x and

|84 (t, @) < M(1+ |z|®) Vz €R.

Then V£ LoV, ase — 0 for any t € [0, T7.

Proof. We have

t t

V,=Vy+ /Oz(s,Ss)st + /ﬁ(s,Ss)dSS

0 0
t t

Vit [ [a(s,SrB. + p(s. S)5]ds + [ a(s. S)S.aW,

0 0

t t

V=W —l—/a(s S%)dBs —i—/ﬁ(s,Sj)de
0
¢

0
¢
= / (s, S2)rBs 4+ pB(s, S5)S5]ds + /aﬁ(s,Sg)Side’e.
0 0

Hence,

(4.3) - Vi </’a $,85) — als, Sy)|reds
—i—,u/}ﬁ s,55)8% — S,SS>SS‘dS

'/aﬁ s,S9%)ScdW e —/aﬁ(s, S)SAWH | =1, + I + Is.
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First, by using Holder’s inequality and the condition (C}) we get
¢ t
(4.4) E[IY] < /7"2 627’5ds/E'|oz(s7 S¢) — a(s, S,)|*ds

0 0
t

M2 2rT 1
<! (62 )/E|S§—Ss\251ds.

0

2
Consequently, Corollary 2.1 implies that Iy ra), 0 when ¢ — 0.

Next, we prove that I, also converges to 0 in L?*(€). Indeed, put
ft,z) = B(t,x)x, ui = f(t,5;) and uy = f(¢,5;) then by Holder’s
inequality we have
(45) Elui —w|* < E[A(t,2)(S; - 5))]°

< [BIA(,2)[*]? [B]S] - S.['] 2,
where

of(t
A(t,x) = sup }y‘
min(S§,S¢) <z <max(S§,St) z

From Corollary 2.1 we have

(4.6) [E|S; — S ]2 < C(S, T)e* 2 — 0

uniformly in ¢ € [0,7] as ¢ — 0. Therefore, we need only to prove the
first term in the right-hand side of (4.5) is finite.

Using the conditions (C3) and (C3) we have

of(t,
2D < a(r, )+ 5400
<180, x)| + Mtz 4 M(|z| + |z[T%).
Hence,
Alt,z) < sup (18(0, z)| L \tE M|z + |z
min(S¢,S;) <z<max(S¢,S;)
<180, So)| + MT>*2 + M sup (| + =] *0%)

min(S§,S) <z<max(S§,St)

<180, S0)| + MT=+% + M sup (|z] + |z['*%)
|| <SF+St

< |B(0, So)| + MT=+% 4+ M (IS5 + S| + [ S5 + S, %)
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and the inequality (a + b+ ¢)? < 3(a? + b* + ¢?) leads us to
EJA(t,2)|* < 27[(8(0, Sp) + MT2+%2) + M1E|SE 4 S,[*
+ M*E|S; + S| +99)].
Now it is enough to prove E|S§ + S|P < oo for any p > 1. We have
(4.7) B[S} + SifP < 277 H(E|SF| + E|S, ")
< op-1 Sé’( E ep(ut—%UQK(t-I—e,t)-I—UWtH’E) + Eep(utwwtff))_

Obviously, the right-hand side of (4.7) is bounded by a constant Cr
because WtH’E, WH t € [0,T] are centered Gaussian processes with fi-

L2(Q
nite variances. Thus, u; @, u; uniformly in ¢ € [0,7] when ¢ — 0
and

t
2
E|L|* = ,uQE(/(ui—uS)ds) < u*T? sup Elu—u,> =0, ¢ — 0.

0<s<T

Finally, we show that I3 L, 0 when e — 0.

¢ ¢
(4.8) I3 = ‘/Uuide’a - /crudeSH
0

t

¢
+ ' /UustVSH’E - /audeSH
0

0

¢
< ‘/a(ui — ug)dWH=
0

Since S, € C2 [0,7] = () €°[0, 7] and under the conditions (Cy), (Cs),
5<5
the simple estimate

|ut — US| S |6(t, St)St — ﬁ(S,St)St| + ‘ﬁ(S,St)St — B(S,SS)SS|

implies that u; € C'2 [0, T]. Hence, the convergence of the second term
in the right-hand side of (4.8) to zero in probability follows from The-
orem 3.1. The first term converges to zero in probability because of
Lemma 4.1 below. Indeed, we have from the chain rule for Malliavin
derivative

Dyuy = Dy[B(t, S)S\] = [3(t, S)Si + B(t, S)] Dy [Soe 7]
= U‘St[ﬁa/c(ta St)St + ﬂ(ta St)}K@? S)
which implies that the condition (4.9) below holds.
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The proof of Theorem thus is complete.

Denote by DY? C L%*(Q) the space of Malliavin differentiable vari-
ables with norm

-

2

T
|Hﬂh2::[EHFP]2+Z?L/\DUFqu]
0

Lemma 4.1. Suppose that H > % Let u,u® € DY2 be adapted stochas-
tic processes satisfying the condition

T t

(4.9) //Ww@ﬂ@@%ﬁ<ma&
0

0

If u§ — uy ucp (uniform convergence in probability), that is V't : |uf —
w| < Ce™ a.s with some v > 0 then

T
(4.10) lim [ (uS — ug)dWHs =0

e—0
0

wn probability.

Proof. From the decomposition (2.1) we have

T

T
/(ui — Uy) dI/Vk(),H’6 = /(ui —ug)K(s+ ¢, s)dW;
0

0

s

T
+ /(ui —us)/alK(s—i—a,t) dWds.
0 0

S
Since lin% J O K (s+e,t) dW; does not exist, we can not take the limit as
E— 0

¢ — 0 directly. However, the anticipating stochastic Fubini’s theorem
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(see Theorem 3.1 [7]) yields
T

T
/(ui — Uy) dVVsH’€ = /(ui —ug)K(T +¢,8) dW;
0 0

S

T T
+ //(uf —uy — ul + ug) " K(s+ e, t)dtoW,
0
T

t
+/dt/DS(U§—Ut)alK(t+€,S)dS = A1—|—A2+A3,
0 0

where D,F is the Malliavin derivative of variable F' and §Wj is the
Skorokhod differential.

It is easy to see that A;, Ay — 0 because u; — wu; ucp and the
condition (4.9) is enough to ensure the convergence of Aj to zero.

The proof of Lemma thus is complete. O

Theorem 4.3. Suppose that H > % Let C(t,S5) denote the value of
a European call option at time t in the approrimation (FB-S) model
(1.8), (1.7). Then the Black-Scholes equation is given by

1 0%C oC oC
4.11 —0?K? )2 e _ _
(4.11) 57 (t+e,t)(59) 8(55)2+r8555 + T rC' =0
and as a consequence, the Black-Scholes equation in (FB-S) model is
oC oC
(4.12) T%S—FE—TC’—O

which gives us the explicit formula for price of a Furopean call option
at time t =0

(4.13) Co=(Syp—e™K)".

Proof. Using 1to’s differential formula, we get

oC oc 1 0%C
414 _ (7 £\ Qe - 2K2 £\2
(4.14) dC [(915 + (n+ oy;)S 55 + 50 (t+¢€,t)(S%) 8(55)2]dt
+0K(t+5,t)§Sath.

05¢

We form a portfolio consisting of

e one unit of the option C,
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e a short position on aasc units of the stock S¢ and

€

e a debt of A(t, S°) at the risk-free interest rate 7.

The value process R(t,.SF) of this portfolio satisfies

oC
— ——dS*— A
dR = dC GSEdS rdt
oc 1, , 9 9*C
=[—+ 0K r——— — A )
[at + 50 (t+¢e,t)(S%) FIGBE r|dt
Now we choose
1.0C 1 0°C'
A:_ - 2K2 £\ 2
“[o + 5 KA+ e 1)(S) 8(55)2}

then dR = 0. Obviously, the portfolio does not yield any return, hence
its value itself must also be zero. This leads to the Black-Scholes partial
differential equation

0*C oc . oC
8(5’5)2+r8353 +———-rC=0

1 2772 €\2
(415)  So*K2(t+2,1)(S7) =

which has to be solved with respect to the boundary conditions
C(t,0) =0V tel0,T],
The equation (4.12) follows from (4.15) by taking the limit as ¢ — 0.

The proof of Theorem thus is complete. 0

Remark 4.1. The equation (4.15) holds for all H € (0,1) and in the
case, WH = W@ is LfBm, it becomes
0*C oC oC

1
4.1 — 2 2a(QeN2 € o —
(4.16) 50°€ (59) 8(S€)Q+T8855 + 5 rC =0

and we get the price of a European call option
Co(e) = SoN(dy) — e " KN(dy)

2.2 2
In 504 (r4-2°=)T IS0yt

pryo , do = ey T and N(z) is the stan-
dard normal cumulative distribution function.

2«

where d; =

Obviously, for H = %, we get the well-known Black-Scholes pricing
formula.
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